"Mirad los lirios del campo" (Mt. 6,28)
"Ex divina pulchritudine esse omnium derivatur" (Tomás de Aquino)
Comienzo esta entrada con tres reflexiones que me parecen interesantes para contextualizarla.
La segunda procede de Bertrand Russell:
Feynman subraya una obviedad y es que la ciencia no solo no perturba, sino que facilita la mirada estética a la Naturaleza, tomando el ejemplo de una flor.
Traigo esto aquí como contexto en el que situar mi propia y enorme ignorancia del mundo que me rodea, algo que ya sabía, pero que a veces se me revela al modo de una evidencia que aparenta ser casual o de un modo más vulgar, como olvido. Esta vez fue en un paseo cotidiano. Simplemente me fijé en lo que tantas veces habré visto sin darme cuenta, una flor pentagonal. Había más de ese tipo y de otra especie también con ese modo poligonal en un trozo de campo.
Comparé intuitivamente ese problema con otro más próximo. De una célula, un cigoto, se desarrolla una mórula con simetría radial, prácticamente esférica, de la que surgirá ya en un estadio precoz del desarrollo embrionario humano un organismo con simetría bilateral y cuyos componentes internos la mantendrán o no según la función a la que están destinados. Riñones o manos la conservarán en tanto que no lo harán ni el corazón ni el hígado. De una célula surgió quien lea esta entrada, y de otra su autor.
Turing aplicó su modelo a un anillo de células, cada una de las que estaban en contacto con sus vecinas, o a un disco tisular continuo. Podría predecirse entonces un patrón ondulatorio estacionario sin variación temporal, exceptuando un aumento de amplitud. Ese modelo podría aplicarse a los ejemplos de simetría poligonal que presentan las flores, siendo la pentagonal la más común y la heptagonal la más rara (algo resaltado en la publicación de Turing).
En 2002 se publicó un estudio de los patrones de Turing con simetría pentagonal (3) y más recientemente, un “paper online” se centró en la generación de flores por auto-organización con un modelo de Turing modificado (4)
Turing asumió por razones prácticas una linealidad en su aproximación matemática, pero entendió que el modelo más adecuado requiere de ecuaciones no lineales, lo que le indujo a proponer el uso futuro de simulación por computación digital.
Las flores no interesaban ni interesan mucho, en esta época centrada en el reduccionismo genético, exceptuando modelos concretos como Arabidopsis thaliana, pero las implicaciones del trabajo de Turing sí interesaron (más que ahora), y pronto su modelo se amplió más allá de la asunción de linealidad, abarcando ecuaciones diferenciales no lineales y abordando el estudio de diversos fenómenos disipativos mediante cálculo por ordenador. Se simularon la bella reacción de B-Z, el crecimiento embrionario y multitud de fenómenos asociados a no linealidad. La aproximación discreta, favorecida por una computación cada día más potente, progresa en la actualidad y ya hace años que esa perspectiva, de la que surgieron los llamados “autómatas celulares”, con el simpático “juego de la vida” de Conway popularizado por el interesantísimo Martin Gardner, dio lugar al célebre libro de Wolfram, “A New Kind of Science”.
La flor que yo vi, tan semejante a otras, pero única en un marco espacio-temporal y biológico (también biográfico para mí) me llevó a recoger malamente lo anteriormente expuesto aquí, pero no me reveló su misterio ni redujo mi ignorancia, más bien la aumentó considerablemente, porque sé mucho menos de lo que creía saber, desde que la contemplé. Ya aceptaba que la flor era sin “porqué” como decía el místico Silesius, pero descubrí al verla que no tenía idea tampoco del “cómo”, de cómo se desarrolla así, por válida que sea como gran avance la publicación de Turing. Ya no digamos aspirar a la idea del “qué” esencial (ni siquiera sé del “qué” inicial, del taxonómico, sin usar apps al respecto).
Turing estaba obsesionado con Blancanieves. Y murió tras la ingesta de una manzana envenenada, dando fin a la dura vida que, a pesar de sus logros, le hicieron pasar por su condición de homosexual en tiempos poco propicios para ello. Una manzana que, como todas, albergaría en su seno un corazón procedente de la fecundación de una flor, un corazón pentagonal (visible claramente en sección perpendicular a su eje).
Nos queda mucho por saber de forma colectiva e incomparablemente más de modo individual. Y quizá este recuerdo de Turing y de quienes prosiguieron sus investigaciones sobre sistemas disipativos no lineales, sobre la termodinámica de procesos irreversibles, pueda verse en su desvelamiento de saber pero, sobre todo, de ignorancia, a la hora de tratar de comprender el cambio topológico que incluye al geométrico, que abarca desde la información contenida en una estructura aproximadamente lineal, el ADN, hasta una flor o un niño, tras su expresión en un amplio abanico de proteínas de formas tridimensionales muy diversas, producidas en maquinarias subcelulares riboproteicas, y relacionadas entre sí de un modo sutil, maravilloso, como los mirabilia a los que se refería Jacques LeGoff.
Lo maravilloso que nos rodea y constituye bien podría llamarse milagro si no fuera un término altamente incorrecto, porque sumimos que lo milagroso elude la legalidad física, siendo así que es precisamente eso lo que impone lo real que canaliza contingencias extrínsecas e intrínsecas para dar a cada manifestación del Ser, incluso a una flor que hoy es y mañana desaparece, algo de su propia belleza.
Este blog nació como juego entre memoria y olvido. La ignorancia a que aludo en el título de esta entrada no procede de modestia alguna, sino de realismo aceptado. Somos más ignorantes cada día, y no sólo por el olvido, sino por el propio aprendizaje, que nos desvela más claramente un mar de ignorancia que no cesa de crecer. Eso puede ocurrir con cualquier fenómeno u objeto de la naturaleza. A veces, basta con mirar una flor.
Referencias:
(1) Turing AM. The Chemical Basis of Morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 1952. 237;641: 37-72.
(2) Dutta K. Reaction-diffusion Dynamics and Biological Pattern Formation. Journal of Applied Nonlinear Dynamics. 2017;6;4:547-564.
(3) Aragón JL, Torres M, Gil D, Barrio RA and Maini PK. Turing patterns with pentagonal symmetry. Physical Review E. 2002. 65, 051913.
(4) Schiffmann Y. The Generation of Flower by Self-organisation. Accesible en https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3967081